Material	4
Lagerluft und Betriebsspiel	4
Einbautoleranzen	6
Maß-, Form- und Lagetoleranzen	9
Käfige	16
Dichtungen/Deckscheiben	16
Schmierung	17
Tragfähigkeit und Lebensdauer	19
Reibung und Erwärmung	22

1. Material

Im Wälzkontakt zwischen Kugel und Laufbahn können sehr hohe Flächenpressungen von bis zu 4.000 N/mm² auftreten.

Aufgrund der gewählten Passungen an Gehäuse und Welle können diese verändert und lokal weiter verstärkt werden.

Durch unzureichende Schmierung sowie in den Wälzkontakt eingebrachte Verunreinigungen kann es zu einer Materialerwärmung und zum Verschleiß kommen.

Anwendungsbezogen werden oftmals Kugellager aus korrosionsbeständigem Stahl benötigt.

Das zur Herstellung von Kugellagern verwendete Material muss daher neben sehr guten Festigkeitseigenschaften, einer hohen Härte und Zähigkeit auch beste Verschleißeigenschaften besitzen.

Zur Vermeidung dauerhafter Maß- und Formveränderungen muss es speziell temperiert werden und darf dabei nicht nennenswert an Härte und in Folge an Tragzahl verlieren.

Dies gilt auch für Lager aus korrosionsbeständigem Stahl, welcher bis 300°C form- und maßstabil ist.

In der Standardausführung wird durchgehärteter Chromstahl 100Cr6 für Ringe und Kugeln verwendet. In diesem Fall beträgt die Härte der Ringe nach der Wärmebehandlung 60 bis 64 HRC, diejenige der Kugeln 62 bis 65 HRC. Für die rostbeständigen Lager werden die Innen- und Außenringe aus X65Cr13 oder X105CrMo17 hergestellt. Für die Kugeln wird ein rostfreier Stahl SUS440C verwendet. Bei extremen Beanspruchungen bezüglich Korrosion, bieten wir Ihnen hochstickstoffhaltige Lager (HNS) mit optimierter Wärmebehandlung an. Diese verfügen zusätzlich über eine höhere Härte und Zähigkeit und zeichnen sich in korrosiven Umgebungen durch eine optimale Lebensdauer aus.

1.1 Einfluss des Wälzlagerstahls auf die Lagerlebensdauer

Für das Erreichen einer hohen Ermüdungslebensdauer ist neben den geometrischen Eigenschaften des Wälzlagers insbesondere auch der Reinheitsgrad des verwendeten Stahls von besonderer Bedeutung.

Nichtmetallische Einschlüsse oxidischer, sulfidischer oder silikatischer Art im Stahl lassen bei Wälzbelastung erhöhte Spannungs- und Verformungskonzentrationen entstehen und können die tatsächliche Lebensdauer eines Lagers erheblich herabsetzen. SBN verwendet daher ausschließlich Stähle, bei denen diese Einschlüsse durch Vakuumentgasung auf ein Minimum reduziert wurden. Diese Stähle zeigen ihre besondere Stärke vor allem in Anwendungen ohne Oberflächenverschleiß, d.h. bei guten Schmierungsbedingungen und sauberer Umgebung.

Wälzlager, die auf Grund von ungenügenden Schmierungsbedingungen oder Verschmutzungen nur geringe Lebensdauern erreichen, können durch den Einsatz eines besonderen Härteverfahrens verschleißresistenter werden. Bitte konsultieren Sie für eine ausführliche Beratung die SBN Anwendungsingenieure.

Eine kontinuierliche Qualitätsüberwachung im Werk stellt in allen Fällen eine gleichbleibend gute Qualität sicher.

2. Lagerluft und Betriebsspiel

Die einwandfreie Funktion eines Kugellagers hängt in hohem Maße von dem richtigen Betriebsspiel ab. Das Betriebsspiel ergibt sich aus der Lagerluft in nicht eingebautem Zustand und deren Veränderung durch Passungsübermaß und Temperatureinflüssen im eingebauten Zustand.

2.1. Radiale Lagerluft für Radialrillenkugellager

Die radiale Lagerluft eines Wälzlagers ist das Maß, um das sich der Innenring gegenüber dem Außenring des nicht eingebauten Lagers in radialer Richtung von einer Grenzstellung zur gegenüber liegenden verschieben lässt. Die radiale Lagerluft ist in 5 Gruppen eingeteilt (siehe Tabelle 1: Gruppen der radialen Lagerluft). Kugellager mit normaler Lagerluft CN haben ein für normale Betriebsverhältnisse funktionsgerechtes Betriebsspiel, sofern die empfohlenen Wellen- und Gehäusetoleranzen eingehalten werden.

Lagerluft C3, C4 oder C5 kommt vor allem bei größeren und bei hochbelasteten Lagern in Betracht, aber auch bei Presspassungen der Ringe oder höheren Temperaturgefällen zwischen Innen- und Außenring.

Lager mit Lagerluft C2 sollten nur in Ausnahmefällen eingesetzt werden, z.B. bei starken Wechselbelastungen in Verbindung mit Schwenkbewegungen oder geringen Drehzahlen. In solchen Fällen empfiehlt sich eine sorgfältige Überwachung der Lager während des Betriebes, da mit starker Erwärmung zu rechnen ist. Die Lagerluft wird durch Nachsetzzeichen gekennzeichnet, ausgenommen CN bzw. MC3 bei Miniaturkugellagern.

Bereich	Bedeutung
C2	radiale Lagerluft kleiner CN
CN	radiale Lagerluft normal
C3	radiale Lagerluft größer CN
C4	radiale Lagerluft größer C3
C5	radiale Lagerluft größer C4

Tabelle 1: Gruppen der radialen Lagerluft

Bohr	ung	radiale Lagerluft											
C	k	М	C1	M	C2	M	C3	М	C4	M	C5	M	26
[m	m]	ĺμ	m]	[µm]		ĺμ	[µm] [µm]		m]	[μ	m]	Įμ	m]
über	bis	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
0,6	6	0	5	3	8	5	10	8	13	13	20	20	28

Tabelle 2: Radiale Lagerluft für Präzisions-Miniaturkugellager

Во	hrung	radiale Lagerluft									
	d	C	2	С	:N	C	:3	C	:4	C	5
[mm]	ĺμ	m]	ĺμ	m]	ĺμ	m]	ĺμ	m]	ĺμ	m]
über	bis	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
-	10	0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	36	30	58	53	84	75	120

Bohr	ung				
C	ł	С	N		
[m	m]	[µm]			
über	bis	min.	max.		
6	10	6	17		
10	14	6	19		
14	18	8	21		
18	24	10	23		
24	30	11	24		
30	40	13	29		

Tabelle 4: Radiale Lagerluft für zweireihige Pendelkugellager mit zylindrischer Bohrung

Tabelle 3: Radiale Lagerluft für einreihige Rillenkugellager

2.2 Axiale Lagerluft für zweireihige Schrägkugellager

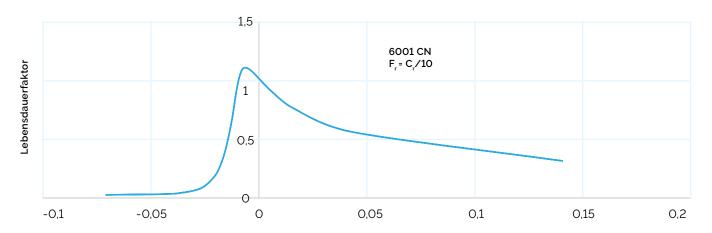
Bei zweireihigen Schrägkugellagern (Baureihe 30/., 38.., 30.., 32..) ist die axiale Lagerluft über die DIN-Norm 628-3 festlegt. Die Gruppeneinteilung erfolgt wie bei den Rillenkugellagern in C2, CN, C3.

Bohi	rung			ax	kiale Lagerlı	ıft	
C	d	C	2	C	CN	C	3
[m	m]	ĺμ	m]	[μ	ım]	ĺμ	m]
über	bis	min.	max.	min.	max.	min.	max.
-	10	1	11	5	21	12	28
10	18	1	12	6	23	13	31
18	24	2	14	7	25	16	34
24	30	2	15	8	27	18	37
30	40	2	16	9	29	21	40
40	50	2	18	11	33	23	44
50	65	3	22	13	36	26	48
65	80	3	24	15	40	30	54
80	100	3	26	18	46	35	63
100	120	4	30	22	53	42	73

Tabelle 5: Axiale Lagerluft für zweireihige Schrägkugellager

2.3. Radiales Betriebsspiel

Als Betriebsspiel eines Kugellagers wird das Maß bezeichnet, um das sich die Welle gegenüber dem Außenring des eingesetzten Lagers in radialer Richtung verschieben lässt. Das Betriebsspiel ergibt sich aus der radialen Lagerluft und deren Veränderung durch Passungsübermaß und Temperatureinflüsse.


Die Lebensdauergleichung (Seite 25 und 27) basiert auf der Annahme, dass das Betriebsspiel Null beträgt. In diesem Fall hat das Betriebsspiel keinen Einfluss auf die Lagerlebensdauer. In allen anderen Fällen gibt es einen Einfluss.

Die höchste Lebensdauer kann bei einer geringen Vorspannung erreicht werden, da hierbei die Lagersteifigkeit

erhöht und die Last auf mehrere Wälzkörper verteilt wird. Steigt die Vorspannung zu stark an, sinkt die Lebensdauer in Folge interner Kräfte schnell auf einen kritischen Wert. Ein zu großes Betriebsspiel wiederum kann zu einer ungenügenden Lastverteilung und vermehrter Gleitreibung führen.

Der Einfluss eines Betriebsspiels auf die Lebensdauer kann der untenstehenden Grafik am Beispiel eines Rillenkugellagers 6001 CN entnommen werden.

Für die Berechnung Ihres konkreten Anwendungsfalls konsultieren Sie bitte die SBN Anwendungsingenieure.

Radiales Betriebsspiel in mm

3. Einbautoleranzen

Ein Wälzlager kann nur dann seine volle Tragfähigkeit entfalten, wenn es korrekt auf der Welle und im Gehäuse befestigt ist. Hierbei spielen die Belastungs- und Umlaufverhältnisse in der jeweiligen Anwendung eine wesentliche Rolle.

So neigen Wälzlagerringe mit umlaufenden Lasten und losen Passungen zum Wandern. Tribokorrosion, Laufgeräusche und Beschädigungen an Welle oder Gehäuse sind die Folgen. Miniaturkugellager und Lager mit sehr dünnwandigen Ringen können durch die Wahl einer zu festen Passung sehr leicht vorgespannt werden. Die Vorspannung (negatives Betriebsspiel) beeinflusst die zu erwartende Lebensdauer und die Laufruhe der Lagerung.

Für die richtige Auswahl der geeigneten Einbautoleranzen gilt es die nachfolgenden Lastfälle zu unterscheiden:

Umfanglast am Innenring/Punktlast am Außenring

Punktlast am Innenring/Umfangslast am Außenring

Unwucht/Welle

Gewicht/Last

Unwucht/Gehäuse

Die folgenden Tabellen enthalten allgemeine Richtlinien für die Auswahl geeigneter Wellen und Gehäusepassungen in Abhängigkeit der Belastungs- und Umlaufverhältnisse.

3.1. Wellentoleranzen

Umlaufverhältnis	Wellendurch- messer d [mm]	Montage des Innenrings und Belastung	ISO-Toleranzfeld
Punktlast am	- II - Cui 0 - u	Innenring leicht verschiebbar	g5, g6
Innenring	alle Größen	Innenring nicht leicht verschiebbar	h6, j6
	≤ 50	niedrige Belastung P/C _r < 0,1	j5, j6
		niedrige Belastung P/ C_r < 0,8	ј6
Umfanglast am Innenring	50 bis 100	normale und hohe Belastung P/C _r > 0,8	k5, k6
und unbestimmte Lastrichtung		niedrige Belastung P/C _r <0,1	k6, m6
Ç	100 bis 200	normale und hohe Belastung P/C $_{\rm r}$ > 0,1	m6

Tabelle 6: Richtlinien für die Auswahl der Wellentoleranzen. Gültig für Vollwellen aus Stahl

3.2. Gehäusetoleranzen

Umlaufverhältnis	Montage des Außenrings	Ausführung des Gehäuses und Belastung	ISO-Toleranzfeld
Punktlast	Außenring leicht verschiebbar	ungeteiltes Gehäuse	H6, H7
am Außenring	verschiebbar	geteiltes Gehäuse	H7, H8
		Wärmezufuhr über Welle	G7
	Außenring nicht leicht verschiebbar	ungeteiltes Gehäuse	J6
		geteiltes Gehäuse	J7
		niedrige und normale Belastung	K7
Umfanglast am Außenring und unbestimmte Lastrichtung	Außenring nicht verschiebbar	normale Belastung mit Stößen und große Belastung	M7
		hohe Belastung mit Stößen P/C, > 0,15	N7

Tabelle 7: Richtlinien für die Auswahl der Gehäusetoleranzen. Gültig für Gehäuse aus Stahl oder Gusseisen

Wird für die Anschlusskonstruktion ein anderer Werkstoff verwendet, müssen für den Festsitz folgende physikalische Größen zusätzlich berücksichtigt werden.

- Elastizitätsmodul
- Wärmeausdehnungskoeffizient
- Querkontraktionszahl

Dies gilt insbesondere für Gehäuse oder Wellen aus Aluminium, dünnwandige Gehäuse und Hohlwellen.

3.3. Einbautoleranzen Axiallager

	Welle/Gehäuse	Toleranz
einseitig wirkend	Wellentoleranz	ј6
zweiseitig wirkend	Wellentoleranz	k6
	Aufnahmebohrung	E8
Für hohe Genauigkeit	Aufnahmebohrung	H6

Tabelle 8: Richtlinien für die Auswahl der Wellen-/Aufnahmetoleranzen

3.4. Einbautoleranzen Nadelhülsen

Welle/Gehäuse	Material	Toleranz
Welle	Stahl	h6
Gehäuse	Aluminium	R6
	Magnesium	S6
	Stahl/Guß	N6

Tabelle 9: Richtlinien für die Auswahl der Gehäuse-/Wellentoleranzen

3.5. Gehäuse- & Wellenpassungen

Die Zahlenwerte zu den Passungen gelten für Vollwellen aus Stahl und für Gussgehäuse

			Geh	äusep	assung	en			
Nennmaß der Gehäusebohrung in mm									
über	-	3	6	10	18	30	50	80	120
bis	3	6	10	18	30	50	80	120	150
	Abwe	eichun			endurc oleranz		ser in p	um	
ΔDmp	0	0	Ο	0	0	0	0	0	0
ДИПР	-8	-8	-8	-8	-9	-11	-13	-15	-18
		C	Gehäu	setole	eranz ir	μm			
G7	12	16	20	24	28	34	40	47	54
G/	2	4	5	6	7	9	10	12	14
Н6	6	8	9	11	13	16	19	22	25
110	0	0	0	0	0	0	0	0	0
H7	10	12	15	18	21	25	30	35	40
П/	0	0	Ο	0	0	0	0	0	0
Н8	14	18	22	27	33	39	46	54	63
ПО	0	0	0	0	0	0	0	0	0
J6	2	5	5	6	8	10	13	16	18
30	-4	-3	-4	-5	-5	-6	-6	-6	-7
J7	4	6	8	10	12	14	18	22	26
J/	-6	-6	-7	-8	-9	-11	-12	-13	-14
K7	0	3	5	6	6	7	9	10	12
n/	-10	-9	-10	-12	-15	-18	-21	-25	-28
M7	-2	0	0	0	0	0	0	0	0
IVI /	-12	-12	-15	-18	-21	-25	-30	-35	-40
N7	-4	-4	-4	-5	-7	-8	-9	-10	-12
IN/	-14	-16	-19	-23	-28	-33	-39	-45	-52

Tabelle 10: ISO-Toleranzen

			Wel	llenpa	assunç	gen			
	Nennmaß der Welle in mm								
über	-	3	6	10	18	30	50	65	80
bis	3	6	10	18	30	50	65	80	100
Ab	weicl	hung			ungsd tolerai	urchm nz)	esser	in µm	
A Dmn	0	0	0	0	0	0	0	0	0
ΔDmp	-8	-8	-8	-8	-10	-12	-15	-15	-20
			Welle	entole	eranz i	n µm			
a.E	-2	-4	-5	-6	-7	-9	-10	-10	-12
g5	-6	-9	-11	-14	-16	-20	-23	-23	-27
~ G	-2	-4	-5	-6	-7	-9	-10	-10	-12
g6	-8	-12	-14	-17	-20	-25	-29	-29	-34
h G	0	0	0	0	0	0	0	0	0
h6	-6	-8	-9	-11	-13	-16	-19	-19	-22
:=	2	3	4	5	5	6	6	6	6
j5	-2	-2	-2	-3	-4	-5	-7	-7	-9
:0	4	6	7	8	9	11	12	12	13
j6	-2	-2	-2	-3	-4	-5	-7	-7	-9
1.5	4	6	7	9	11	13	15	15	18
k5	0	1	1	1	2	2	2	2	3
L.C	6	9	10	12	15	18	21	21	25
k6	0	1	1	1	2	2	2	2	3
	8	12	15	18	21	25	30	30	35
m6	2	4	6	7	8	9	11	11	13

4. Maß-, Form- und Lagetoleranzen

Die Toleranzen unserer Kugellager entsprechen DIN 620-2 und DIN 620-3. Die Genauigkeiten entsprechen der Toleranzklasse PN. Für Lager mit höherer Genauigkeit sind die Toleranzen auf die Werte der Toleranzklassen P6, P5 und P4 eingeengt.

4.1. Kantenabstände für Radial-Kugellager und Axial-Kugellager

Die aufgeführten Kantenabstände entsprechen den in DIN 620-6, ISO 582 vereinbarten Festlegungen (Abbildung 2: Kantenabstände, Tabelle 8: Grenzwerte der Kantenabstände – Toleranzwerte in mm)

Es wird das Kleinstmaß des Kantenabstandes angegeben. Bei Axial-Rillenkugellagern sind die Toleranzen für die Kantenabstände in axialer Richtung gleich denen in radialer Richtung.

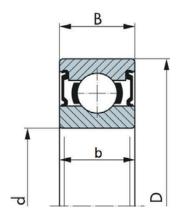


Abbildung 1: Hauptabmessungen

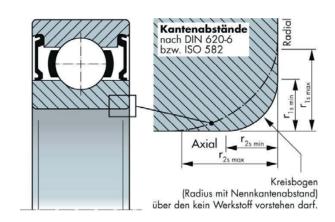


Abbildung 2: Kantenabstände

Nennkantenabstand	Lagerb	ohrung	Grenzwerte der Kantenabstände						
	(t	Ra	dial	Ax	rial			
r _{1s min}	über	bis	r _{1s min}	r _{1s max}	$\rm r_{2smin}$	r _{2s max}			
0,05	-	-	0,05	0,10	0,05	0,2			
0,08	-	-	0,08	0,16	0,08	0,3			
0,10	-	-	0,10	0,20	0,10	0,4			
0,15	-	-	0,15	0,30	0,15	0,6			
0,20	-	-	0,20	0,50	0,20	0,8			
0,30	-	40	0,30	0,60	0,30	1,0			
	40	-	0,30	0,80	0,30	1,0			
0,6	-	40	0,60	1,00	0,60	2,0			
	40	-	0,60	1,30	0,60	2,0			
1,00	-	50	1,00	1,50	1,00	3,0			
	50	-	1,00	1,90	1,00	3,0			
1,10	-	120	1,10	2,00	1,10	3,5			
	120	-	1,10	2,50	1,10	4,0			

Tabelle 11: Grenzwerte der Kantenabstände Toleranzwerte in mm

4.2. Maß-, Form- und Lagetoleranzen nach DIN 620 - Radial-Kugellager

Maßbuchstabe	Tolerierte Eigenschaft nach DIN ISO 1132/ DIN 620	DIN ISO 1101 Bezeichnung Symbol
d	Nenndurchmesser der Bohrung	-
Δ_{dmp}	Abweichung des mittleren Bohrungsdurchmessers in einer Ebene	-
V_{dp}	Schwankung des Bohrungsdurchmessers in einer einzelnen radialen Ebene	Rundheit O¹¹
V_{dmp}	Schwankung des mittleren Bohrungsdurchmessers	Parallelität //
D	Nennaußendurchmesser	
Δ_{Dmp}	Abweichung des mittleren Außendurchmessers in einer Ebene	-
V_{Dp}	Schwankung des Außendurchmessers in einer einzelnen radialen Ebene	Rundheit O¹¹
V_{Dmp}	Schwankung des mittleren Außendurchmessers	Parallelität //
В	Nennbreite des Innenrings	-
Δ_{Bs}	Abweichung einer einzelnen Innenringbreite	-
V_{Bs}	Schwankung der Innenringbreite	Parallelität //
С	Nennbreite des Außenrings	-
$\Delta_{_{ extsf{Cs}}}$	Abweichung einer einzelnen Außenringbreite	-
$V_{\sf Cs}$	Schwankung der Außenringbreite	Parallelität //
d	Nenndurchmesser der Bohrung	-
K_{ia}	Rundlauf des Innenrings am zusammengebauten Lager	Rundlauf 7
K_{ea}	Rundlauf des Außenrings am zusammengebauten Lager	Rundlauf 7
S _d	Planlauf der Stirnseite in Bezug auf die Bohrung	Planlauf 7
S _D	Schwankung der Neigung der Mantellinie bezogen auf die Bezugs- seitenfläche	Planlauf 7
S_e	Schwankung der Scheibendicke der Gehäusescheibe bei Axiallagern (Axialschlag)	-
S	Planlauf der Stirnseite in Bezug auf die Laufbahn des Außenrings am zusammengebauten Lager	Planlauf 7
S _i	Schwankung der Scheibendicke der Wellenscheibe bei Axiallagern (Axialschlag)	-
S_{ia}	Planlauf der Stirnseite in Bezug auf die Laufbahn des Außenrings am zusammengebauten Lager	Planlauf 7

Tabelle 12: Maßbuchstaben und Toleranzsymbole

 $^{^{\}rm D}$ Die Rundheit nach DIN ISO 1101 entspricht dem halben Toleranzwert der Schwankung der Einzeldurchmesser V $_{\rm dp}$ bzw. V $_{\rm Dp}$ nach DIN 620

Toleranzklasse PN - Normaltoleranz

d		$\Delta_{ ext{dmp}}$			V_{dp}		V_{dmp}	K_{ia}	Δ	Bs	V_{Bs}
		fú	ür Durchmess	serreihe na	ch DIN 61	6					
[mn	n]	Abı	maß	7,8,9	0.1	2,3,4			Abı	maß	
über	bis	oberes	unteres		max.		max.	max.	oberes	unteres	max.
0,61)	2,5	0	-8	10	8	6	6	10	0	-40	12
2,5	10	0	-8	10	8	6	6	10	0	-120	15
10	18	0	-8	10	8	6	6	10	0	-120	20
18	30	0	-10	13	10	8	8	13	0	-120	20
30	50	0	-12	15	12	9	9	15	0	-120	20
50	80	0	-15	19	19	11	11	20	0	-150	25
80	120	0	-20	25	25	15	15	25	0	-200	25
120	180	0	-25	31	31	19	19	30	0	-250	30

Tabelle 13: Innenring – Toleranzwerte in μm

		Δ)mp		$V_{_{\mathrm{Dp}}}$			V _{Dmp} ²⁾	K _{ea}	Δ_{Cs}	V _{Cs}
		für D	abgedichtet urchmesse nach DIN 61	rreihe			Lager mit Deck- oder Dichtschreiben				
[m	m]	Abr	maß	7,8,9	0,1	2,3,4					
über	bis	oberes	unteres		max.		max.	max.	max.		
2,51)	6	Ο	-8	10	8	6	10	6	15		
6	18	0	-8	10	8	6	10	6	15		
18	30	Ο	-9	12	9	7	12	7	15	identisch	
30	50	0	-11	14	11	8	16	8	20	$mit\Delta_{Bs}$	
50	80	0	-13	16	13	10	20	10	25	und V _{Bs} für Innenring	
80	120	0	-15	19	19	11	26	11	35	des selben Lagers	I
120	150	0	-18	23	23	14	30	14	40	(siehe Tabelle 13)	
150	180	0	-25	31	31	19	38	19	45	Tabelle 13/	
180	250	0	-30	38	38	23	-	23	50		
250	315	0	-35	44	44	26	-	26	60		

Tabelle 14: Außenring – Toleranzwerte in μm

 $^{^{\}rm 1)}$ Dieser Durchmesser ist eingeschlossen $^{\rm 2)}$ Gilt vor dem Zusammenbau des Lagers und nachdem innere und/oder äußere Sprengringe entfernt sind

Toleranzklasse P6 - Eingeengte Toleranz

d		Δ	lmp		V_{dp}		$V_{\rm dmp}$	K _{ia}	Δ	Bs .	V_{Bs}
					urchmesse ach DIN 6:						
[mr	m]	Abr	maß	7,8,9	0,1	2,3,4			Abr	maß	
über	bis	oberes	unteres		max.		max.	max.	oberes	unteres	max.
0,61)	2,5	0	-7	9	7	5	5	5	0	-40	12
2,5	10	0	-7	9	7	5	5	6	0	-120	15
10	18	0	-7	9	7	5	5	7	0	-120	20
18	30	0	-8	10	8	6	6	8	0	-120	20
30	50	0	-10	13	10	8	8	10	0	-120	20
50	80	0	-12	15	15	9	9	10	0	-150	25
80	120	0	-15	19	19	11	11	13	0	-200	25
120	180	0	-18	23	23	14	14	18	0	-250	30

Tabelle 15: Innenring – Toleranzwerte in μm

D		Δ)mp		$V_{_{\mathrm{Dp}}}$			V _{Dmp} ²⁾	K _{ea}	$\Delta_{_{\text{Cs}}}$ $V_{_{\text{Cs}}}$
				für D	abgedichtete urchmesser nach DIN 616	reihe	Lager mit Deck- oder Dichtscheiben			
[mr	m]	Abr	maß	7,8,9	0,1	2,3,4				
über	bis	oberes	unteres		max.		max.	max.	max.	
2,51)	6	Ο	-7	9	7	5	9	5	8	
6	18	0	-7	9	7	5	9	5	8	
18	30	Ο	-8	10	8	6	10	6	9	identisch
30	50	0	-9	11	9	7	13	7	10	mit Δ _{Bs} und V _{Bs} für
50	80	Ο	-11	14	11	8	16	8	13	Innenring des selben
80	120	0	-13	16	16	10	20	10	18	Lagers
120	150	Ο	-15	19	19	11	25	11	20	(siehe Tabelle 15)
150	180	0	-18	23	23	14	30	14	23	
180	250	Ο	-20	25	25	15	-	15	25	
250	315	0	-25	31	31	19	-	19	30	

Tabelle 16: Außenring – Toleranzwerte in μm

 $^{^{\}scriptscriptstyle 1)}$ Dieser Durchmesser ist eingeschlossen

²⁾ Gilt vor dem Zusammenbau des Lagers und nachdem innere und/oder äußere Sprengringe entfernt sind

Toleranzklasse P5 - Eingeengte Toleranz

d		Δ	dmp	V _{dp}		V_{dmp}	K _{ia}	S _d	S _{in} ²⁾	Δ	Bs	V _{Bs}
					nesserreihe DIN 616							
[mm	า]	Abı	maß	7,8,9	0,1,2,3,4					Abı	maß	
über	bis	oberes	unteres	m	ax.	max.	max.	max.	max.	oberes	unteres	max.
0,61)	2,5	0	-5	5	4	3	4	7	7	0	-40	5
2,5	10	0	-5	5	4	3	4	7	7	0	-40	5
10	18	0	-5	5	4	3	4	7	7	0	-80	5
18	30	0	-6	6	5	3	4	8	8	0	-120	5
30	50	0	-8	8	6	4	5	8	8	0	-120	5
50	80	0	-9	9	7	5	5	8	8	0	-150	6
80	120	0	-10	10	8	5	6	9	9	0	-200	7
120	180	0	-13	13	10	7	8	10	10	0	-250	8

Tabelle 17: Innenring – Toleranzwerte in μm

D		Δ	Dmp	V	3) Dp	V _{Dmp} ²⁾	K _{ea}	S _D	S _{sa} ²⁾	$\Delta_{ ext{Cs}}$	V _{Cs}
					chmesserreih ch DIN 616	ne					
[mn	า]	Abı	maß	7,8,9	0,1,2,3,4						
über	bis	oberes	unteres	m	ax	max.	max.	max.	max.		max.
2,51)	6	0	-5	5	4	3	5	8	8		5
6	18	0	-5	5	4	3	5	8	8		5
18	30	0	-6	6	5	3	6	8	8	identisch	5
30	50	0	-7	7	5	4	7	8	8	mit	5
50	80	0	-9	9	7	5	8	8	10	Δ_{Bs} und V_{Bs}	6
80	120	0	-10	10	8	5	10	9	11	für Innenring des selben	8
120	150	0	-11	11	8	6	11	10	13	Lagers (siehe	8
150	180	0	-13	13	10	7	13	10	14	Tabelle 17)	8
180	250	0	-15	15	11	8	15	11	15		10
250	315	0	-18	18	14	9	18	13	18		11

Tabelle 18: Außenring – Toleranzwerte in μm

 $^{^{1)}}$ Dieser Durchmesser ist eingeschlossen

²⁾ Gilt vor dem Zusammenbau des Lagers und nachdem innere und/oder äußere Sprengringe entfernt sind ³⁾ Für Lager mit Deck- oder Dichtscheiben sind keine Werte festgelegt

Toleranzklasse P4 - Eingeengte Toleranz

c	d	Δ	dmp	L	$\Delta_{\sf ds}$		Δ_{dsp}	$V_{\rm dmp}$	K _{ia}	S _d	S _{ia} ²⁾			Δ _{BS}		V _{Bs}
				für	Durchm	esserr	reihen									
				0,1,	2,3,4	9	0,1,2,3,4									
[m	m]	Abı	maß	Ab	maß							Abmaß	normal	Abmaß n	nodifiziert ³)
über	bis	oberes	unteres	oberes	unteres.	max.	max.	max.	max.	max.	max.	oberes	unteres	oberes	unteres	max.
0,61)	2,5	0	-4	0	-4	4	3	2	2,5	3	3	0	-40	0	-250	2,5
2,5	10	0	-4	0	-4	4	3	2	2,5	3	3	0	-40	0	-250	2,5
10	18	0	-4	0	-4	4	3	2	2,5	3	3	0	-80	0	-250	2,5
18	30	0	-5	0	-5	5	4	2,5	3	4	4	0	-120	0	-250	2,5
30	50	0	-6	0	-6	6	5	3	4	4	4	0	-120	0	-250	3
50	80	0	-7	0	-7	7	5	3,5	4	5	5	0	-150	0	-250	4
80	120	0	-8	0	-8	8	6	4	5	5	5	Ο	-200	0	-380	4
120	180	0	-10	0	-10	10	8	5	6	6	6	0	-250	Ο	-380	5
180	250	0	-12	0	-12	12	9	6	8	7	7	0	-300	0	-500	6

Tabelle 19: Innenring – Toleranzwerte in μm

 ¹⁾ Dieser Durchmesser ist eingeschlossen
 ²⁾ Nur für Rillenkugellager und Schrägkugellager
 ³⁾ Nur für Lager, die speziell für gepaarte Anordnungen gefertigt werden

		Δ)mp		$\Delta_{ extsf{Ds}}$	V	3) Osp	V_{Dmp}	\mathbf{K}_{ea}	S _D S _{D1}	S _{ea} ²⁾	$\Delta_{_{Cs}}\Delta_{_{C1s}}$	V _{C1s}
				f	ür Durchm	esserre	ihen						
				(0 - 4	9	0 - 4						
[m	m]	Abr	maß	Ab	maß								
über	bis	oberes	unteres	oberes	unteres	max.	max.	max.	max.	max.	max.		max.
2,51)	6	Ο	-4	0	-4	4	3	2	3	4	5		2,5
6	18	Ο	-4	Ο	-4	4	3	2	3	4	5		2,5
18	30	0	-5	0	-5	5	4	2,5	4	4	5	$\Delta_{_{\mathrm{Cs}}}$ und $\Delta_{_{\mathrm{C1s}}}$ sind	2,5
30	50	Ο	-6	0	-6	6	5	3	5	4	5	identisch mit Δ _{Bs}	2,5
50	80	Ο	-7	0	-7	7	5	3,5	5	4	5	und V _{Bs} für den Innenring des	3
80	120	0	-8	Ο	-8	8	6	4	6	5	6	zugehörigen	4
120	150	0	-9	0	-9	9	7	5	7	5	7	Lagers (siehe Tabelle	5
150	180	Ο	-10	0	-10	10	8	5	8	5	8	19)	5
180	250	0	-11	0	-11	11	8	6	10	7	10		7
250	315	0	-13	0	-13	13	10	7	11	8	10		7
315	400	0	-15	0	-15	15	11	8	13	10	13		8

Tabelle 20: Außenring – Toleranzwerte in μm

 $^{^{1)}}$ Dieser Durchmesser ist eingeschlossen

²⁾ Nur für Rillenkugellager ³⁾ Für Lager mit Deck- oder Dichtscheiben sind keine Werte festgelegt

4.3 Maßtoleranzen Radial-Kugellager mit Flansch

Flanschdicke und Flanschaußendurchmesser

Ne durchr		Flanschdicke (B _f)								
Bohi	rung		$\Delta_{_{ m C}}$	is						
d (n	nm)	PO u	nd P6		nd P4					
über	bis	oberes	unteres	oberes	unteres					
0	2,5	0	-50	0	-50					
2,5	10	0	-50	0	-50					
10	18	0	-120	0	-80					
18	30	0	-120	0	-120					
30	50	0	-120	0	-120					
50	80	0	-120	0	-120					
80	120	0	-150	0	-150					
120	150	0	-200	0	-200					
150	180	0	-250	0	-250					

Nenna durchn		Flanschaußendurchmesser (D _r)								
Lag	ger		Δ	Dis						
D (m	nm)	PO ui	nd P6	P5 u	nd P4					
über	bis	oberes	unteres	oberes	unteres					
2,5	6	125	-50	0	-25					
6	18	125	-50	0	-25					
18	30	330	-52	0	-52					
30	50	390	-62	0	-62					
50	80	460	-74	0	-74					
80	120	540	-87	0	-87					
120	150	630	-100	0	-100					
150	180	630	-100	0	-100					

Tabelle 21: Flanschdicke und Flanschaußendurchmesser – Toleranzwerte in μm

4.4. Maß-, Form und Lagetoleranzen nach DIN 620 - Axial-Kugellager

-20

-25

15

19

Toleranzklasse PN - Normaltoleranz, P6 und P5

u unc	lul	Δ,	lmp	V dp	
(m	(mm)		Abmaß		
über	bis	oberes	unteres	max.	
-	18	0	-8	6	
18	30	0	-10	8	
30	50	0	-12	9	
50	80	0	-15	11	

Toleranzklasse PN - Normaltoleranz

		S _i	S _e
(m	ım)		
über	bis	max.	max.
-	18	10	
18	30	10	Internationals marit C. 6"
30	50	10	Identisch mit S _i für die Wellenscheibe
50	80	10	des selben Lagers
80	120	15	
120	180	15	

Tabelle 22: Toleranzen des Bohrungsdurchmessers für Wellenscheiben – Toleranzwerte in μm

0

80

120

120

180

Tabelle 23: Schwankung der Scheibendicke für Wellen- und Gehäusescheiben – Toleranzwerte in μm

Toleranzklasse PN - Normaltoleranz, P6 und P5

[)	Δ	Этр	V_{dp}	
(m	nm)		Abmaß		
über	bis	oberes	unteres	max.	
10	18	0	-11	8	
18	30	0	-13	10	
30	50	0	-16	12	
50	80	0	-19	14	
80	120	0	-22	17	
120	180	0	-25	19	
180	250	0	-30	23	

Toleranzen der Lagerhöhe

D		1	1	
(mı	m)	Abmaß		
über	bis	oberes	unteres	
-	30	+20	-250	
30	50	+20	-250	
50	80	+20	-300	
80	120	+25	-300	
120	180	+25	-400	

Tabelle 24: Toleranzen des Außendurchmessers für Gehäusescheiben – Toleranzwerte in μm

Tabelle 25: Toleranzen der Nennhöhe eines einseitig wirkenden Lagers – Toleranzwerte in μm

5. Käfige

Der Käfig dient zur Positionierung der Kugeln in gleichmäßigen Abständen auf dem Teilkreisumfang.

Wir bieten verschiedene Käfigausführungen an.

Es sind zwei Käfiggruppen zu unterscheiden:

- · Käfige aus Metall
- Käfige aus Kunststoff

Material	Bauform	Montagezustand
Stahl	zweiteilig	gelappt oder genietet
Stahl	einteilig	offen
Messing	zweiteilig	gelappt oder genietet
Messing	einteilig	offen
Polyamid	gespritzt	eingepresst
Phenolharz	spanabhebend	eingepresst

Tabelle 26: Die meist verwendeten Käfige

J	RJ	TW 1/ TW 2	ТВН
bzw. ohne Kennziffer			

Stahlblech genietet

6. Dichtungen/Deckscheiben

Stahlblech

Mit den Dichtungen/Deckscheiben sollen die Lagerinnenteile gegen das Eindringen von Staub, flüssigen und gasförmigen Partikeln geschützt werden. Darüber hinaus verhindern sie auch das Austreten des verwendeten Schmiermittels.

6.1. Die nicht schleifende Dichtung/Deckscheibe

Bei dieser Ausführung bilden die Dichtungen/Deckscheiben zusammen mit der Schulter des Innenrings eine Spaltdichtung. Dabei gibt es keinen Kontakt zum Innenring.

6.1.1. Metalldeckscheiben (2Z)

Die Deckscheiben bestehen aus gestanztem Stahlblech und stellen einen guten Schutz gegen Verschmutzung durch Staub und feste Partikel dar.

6.1.2. Gummidichtung (2RU/LLB)

Polyamid PA 6.6.../ PA 4.6

25% glasfaserverstärkt

Die RU-Dichtung besteht aus einem stahlblechverstärkten Perbunan-Kautschuk und ist für Temperaturen von -30 °C bis +120 °C einsetzbar. Der Schutz vor Fremdkörpereintritt ist bei gleichem Reibungsverhalten und gleicher Drehzahleignung besser als bei der Verwendung von Deckscheiben.

Hartgewebe (Phenolharz)

6.2. Die schleifende Dichtung

Diese Kugellagerdichtung berührt die Schulter des Innenringes. Dadurch kommt es zu einer Erhöhung des Drehmomentes. Diese Art der Abdichtung stellt den besten Schutz gegen das Eindringen von Staub und anderen Partikeln dar.

Sonderabdichtungen bei höheren Temperaturen, erhöhter

Dichtwirkung und höheren Drehzahlen auf Anfrage.

6.3. Weitere Dichtungswerkstoffe

6.2.1. Gummidichtung (2RS/LLU)

Die RS-Dichtung besteht aus einem stahlblechverstärkten Perbunan-Kautschuk und ist für Temperaturen von -30° C bis +120°C einsetzbar.

6.2.2. Vitondichtung (2VS)

Die VS-Dichtung besteht aus einem stahlblechverstärkten, synthetischen Fluor-Kautschuk (FKM) und ist für Temperaturen von -25 °C bis +230 °C einsetzbar. Sie weist eine hervorragende Beständigkeit gegen chemische Medien auf und ist für Anwendungen im Hochvakuum geeignet.

6.1.3. Teflondichtung (TTS)

Bei dieser Dichtungs-Konzeption handelt es sich um eine glasfaserverstärkte Teflonscheibe, die für Temperaturen über 200 °C ausgelegt ist.

7. Schmierstoffe

7.1. Schmieröle

Schmieröle werden dort eingesetzt, wo geringe Drehmomente erreicht werden sollen. Da man bei werkseitig geölten Lagern nicht von einer Lebensdauerschmierung ausgehen kann, wird ggf. ein Nachschmieren empfohlen.

Bezeichnung	Grundöl	Gebrauchstemperatur [°C]	Viskosität bei 40 °C/100 °C [mm²/sec]
S901	Diester	-55 bis +175	12/3,5
S902	Diester	-54 bis +135	14/4,3
S903	Ester	-65 bis +100	13/3,2

Tabelle 27: Öle

7.2. Füllvolumen

Die Wahl der Schmierstoffmenge beeinflusst sowohl die Fettgebrauchsdauer als auch das Reibungsverhalten bzw. die Grenzdrehzahl der Lager.

Bitte konsultieren Sie für eine anwendungsoptimierte Auslegung die SBN Anwendungsingenieure.

Code	Füllvolumen	zul. Drehzahl	Reibung	Fettgebrauchsdauer
S	50 ± 10%	niedrig	hoch	hoch
Standard	30 ± 10%	mittel	mittel	mittel
K	20 ± 5%	hoch	niedrig	niedrig
X	10 ± 5%	hoch	niedrig	niedrig

Tabelle 28: Füllvolumen

7.3. Schmierfette

Die von uns vorrangig verwendeten Fette finden Sie in Tabelle 29. Für weitere spezielle Betriebsbedingungen stehen auch noch andere Fette zur Verfügung, wie beispielsweise:

- PFPE-Fette für höchste Temperaturen, extreme Medienbeanspruchung oder Vakuumtauglichkeit
- Elektrisch leitfähige Fette mit speziellen Additiven

Bezeichnung	Verdicker	Basis	Gebrauchs- temperatur [°C]	Viskosität bei 40°C/100° C [mm2/sec]	NLGI- Klasse	Einsatzgebiet
S001	Lithium	Ester	-50/+150	26/5,1	2-3	Besonders geräuscharmes Mehrbe- reichsfett, vielfach bei Miniatur- und Dünnringlagern im Einsatz
S002	Polyharnstoff	Mineral	-30/+175	116/12,3	2	Silikon- und LABS freies Wälzlagerfett für hohe Temperaturen und Drehzahlen mit vielfältigem Einsatzgebiet (autokla- vierbar, NSF H2 registriert)
S003	PTFE	PFPE	-80/+204	148/45	2	Tieftemperaturfett für Weltraum und Hochvakuumanwendungen
S004	Fluorotelomer	PFPE	-35/+288	243/25	2	Chemisch gut beständiges Hochtem- peraturfett mit sehr hohem Gebrauchs- temperaturbereich (Einsatz in der Luftfahrtindustrie)
S005	Polyharnstoff	Ester	-40/+180	72/9,4	2	Hochtemperatur-Langzeitfett für den Einsatz in Elektromotoren, Lüfter, Halb- leiterindustrie
S006	Fluorotelomer	PFPE	-35/+260	400/41	2	Chemisch und thermisch hochbeständiges Schmierfett für sehr lange Fettgebrauchsdauern (NSF H1 registriert)
S008	Barium	Ester-/ synth. Kohlenwasser- stoff Mineralöl	-40/+130	21/4,5	2	Schmierfett mit geringem Reibmoment für sehr hohe Drehzahlen bei mittleren Lasten
S009	Lithium	synth. Esteröl	-70/+110	7,5/2,6	1-2	Tieftemperaturfett für geringe Reibmo- mentschwankungen
S010	Lithium	Diester	-50/+120	15,5/3,8	2	Hochgeschwindigkeits- und Leichtlauffett für Miniatur- und Präzisionslager
S011	Barium	Hydrocarbon	-50/+120	30/5,9	2	Synthetisches Langzeitfett für einen breiten Anwendungsbereich
S012	Lithium	Hydrocarbon	-40/+150	130/14	1	Schmierfett für den Einsatz unter Vibrationen und Schwingungen (z.B. Windkraftanlagen)
S014	Aluminium Komplexseife	Synth. Kohlen- wasserstofföl	-45/+120	150/18	1	Schmierfett für die Lebensmittel- und pharmazeutische Industrie (NSF H1 registriert)
S016	Polyharnstoff	Ester	-40/+180	100/11	2-3	Geräuscharmes Hochtemperaturfett und lange Fettgebrauchsdauer
S017	Lithium	synth. Esteröl	-73/+121	13/3	2	Synthetisches Wälzlagerfett für Anwendungen mit sehr hohen Drehzahlen (Luftfahrtindustrie)
S025	Barium	Mineral	-20/+130	220/18	1-2	Langzeitfett für höher beanspruchte Teile in der Textilindustrie
S030	Polyharnstoff	Synth. Grundöl	-50/+120	22/5	2-3	Hochgeschwindigkeitsfett mit sehr geringem Reibmoment
S032	Lithium	Hydrocarbon	-60/+130	17/4	2	Tieftemperaturfett mit gutem Korrosionsschutz
S049	Lithium	Silikonöl	-70/+180	100/11	2	Tieftemperaturfett mit Silikonöl
S058	Aluminium	Synth.Öl	-25/+120	150/18	2	Vollsynthetisches Langzeitschmierfett für die Lebensmittelindustrie (NSF H1 registriert)
S113	Polyharnstoff	PFPE/ Esteröl	-40/+200	160/27	2-3	Hoch- und Tieftemperaturfett zur Lebensdauerschmierung

8. Tragfähigkeit und Lebensdauer

Für die Bestimmung der Lebensdauer bzw. Größe eines Kugellagers interessieren die Zusammenhänge zwischen der Lagerbelastung, Tragfähigkeit und Lebensdauer. Man unterscheidet zwischen der dynamischen Tragfähigkeit des umlaufenden Lagers und der statischen Tragsicherheit bei Belastung im Stillstand. Die nominelle Lebensdauer $\rm L_{10}$ und $\rm L_{10(h)}$ beschreibt die dynamische Tragfähigkeit eines Wälzlagers. Der Faktor $\rm S_{0}$ die statische Sicherheit.

Dynamische Tragfähigkeit

Bei einem umlaufenden Wälzlager besteht zwischen der Belastung und der Laufzeit des Lagers bis zur Werkstoffermüdung ein funktioneller Zusammenhang. Es treten beim Überrollen der Laufbahnen Wechselspannungen auf, die nach einer bestimmten Anzahl von Lastwechseln zur Ermüdung des Werkstoffes an der Oberfläche der Laufbahnen bzw. der Rollkörper führen. Die entsprechende Anzahl Umdrehungen bei einer bestimmten Belastung stellt die Lebensdauer eines Wälzlagers dar.

Die Berechnung der Lebensdauer erfolgt nach der Gleichung

$$L_{10(h)} = 16.666/n \cdot (C/P)^3$$

Ihre graphische Auswertung zeigt die Netztafel. $L_{\rm 10(h)}$ und gibt dabei die Lebensdauer in Stunden bei 10% Ausfallwahrscheinlichkeit an.

Auch kann die Tragfähigkeit eines Lagers für eine bestimmte Anzahl von Umdrehungen angegeben werden. Bei einer dynamischen Tragzahl C und einer dynamisch äquivalenten Belastung P wird eine nominelle Lebensdauer L_{10} von 10^6 Umdrehungen erreicht.

$$L_{10} = (C/P)^3$$

Umgekehrt kann bei einer geforderten Lebensdauer in Stunden und bekannter Drehzahl sowie dynamisch äquivalenter Belastung die erforderliche, dynamische Tragzahl eines Lagers wie folgt bestimmt werden:

$$C \ge P \times \sqrt[3]{\frac{L_{10(h)} \times 60 \times n}{1.000.000}}$$

Statische Tragsicherheit

Die statische Tragsicherheit $S_{\rm o}$ ist das Verhältnis aus der statischen Tragzahl $C_{\rm o}$ und der höchsten auftretenden Belastung $P_{\rm o}$.

$$S_0 = C_0 / P_0$$

Betriebsbedingungen	Statische Tragsicherheit S _o
ruhiger, erschütterungsarmer Betrieb	≥ 0,5
normaler Betrieb	≥ 1
Betrieb bei Stoßbelastung	≥ 2
Lagerung mit hohen Ansprüchen an Laufgenauigkeit und Ruhe	≥ 3

Tabelle 30: Anhaltspunkte zur erforderlichen Tragsicherheit

8.1. Äquivalente Lagerbelastung

Die äquivalente Lagerbelastung P ist eine, konstant in Größe und Richtung angenommene Belastung, die bei Radiallagern einer rein radialen Last entspricht. Diese hypothetische Last hat in der Anwendung dieselbe Auswirkung auf die Lagerlebensdauer wie die tatsächlichen Lasten, kombiniert aus axialen und radialen Komponenten.

Bei kombinierten Lastverhältnissen gilt es daher, die äquivalente Belastung für die Ermittlung der Lebensdauer oder statischen Sicherheit zu bestimmen. Bei rein radialer Belastung entspricht die äquivalente Belastung der radialen Belastung.

Die statisch äquivalente Belastung wird für Drehzahlen kleiner gleich 33 Umdrehungen pro Minute zu Grunde gelegt. Sie wird zur Berechnung der statischen Sicherheit herangezogen.

Die dynamische äquivalente Belastung wird für Drehzahlen größer 33 Umdrehungen pro Minute zu Grunde gelegt. Sie wird zur Berechnung der Lebensdauer herangezogen.

Für Radialkugellager gilt:

Dynamische äquivalente Belastung für Radial- und Schrägkugellager

 $P = XF_r + YF_a$

Statische äquivalente Belastung für Radialkugellager

$$\frac{F_a}{F_r}$$
 > 0,8 : P_o = 0,6 F_r + 0,5 F_a

$$\frac{F_a}{F_r} \le 0.8 : P_o = F_r$$

dynamische äquivalente Lagerlast in (N)
statische äquivalente Lagerbelastung
Faktor zur Berechnung der statischen Tragzahl
radiale Belastung in [N]
axiale Belastung in [N]
Radialfaktor des Lagers

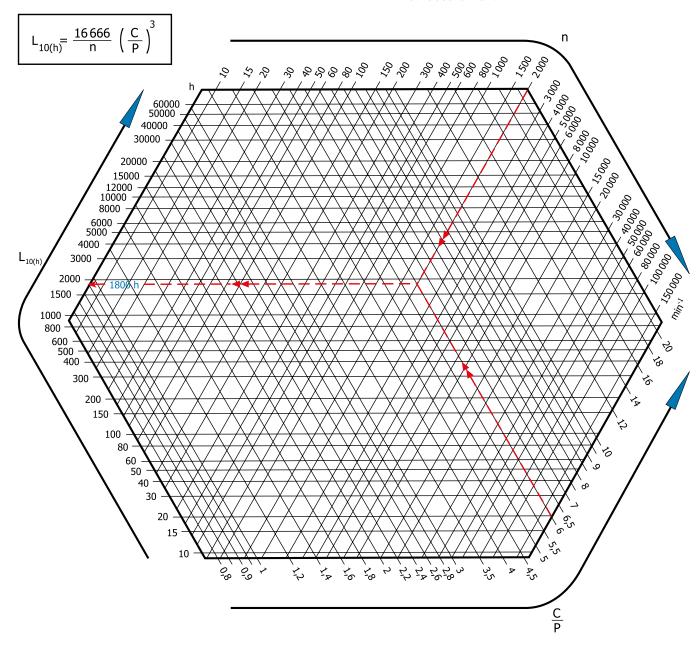
X Radialfaktor des Lager
 Y Axialfaktor des Lagers
 C_{or} statische Tragzahl
 e Weibull-Exponentl

Lagerluft Normal					
		F _a /F	- _r ≤ e	F _a /F	-, > e
$f_o^*F_a/C_{or}$	е	X	Υ	X	Υ
0,172	0,19	1	0	0,56	2,30
0,345	0,22	1	0	0,56	1,99
0,689	0,26	1	0	0,56	1,71
1,03	0,28	1	0	0,56	1,55
1,38	0,30	1	0	0,56	1,45
2,07	0,34	1	0	0,56	1,31
3,45	0,38	1	0	0,56	1,15
5,17	0,42	1	0	0,56	1,04
6,89	0,44	1	0	0,56	1,00

Tabelle 31: Ermittlung der Berechnungsfaktoren X und Y für Radialrillenkugellager Zwischenergebnisse für e und Y sind durch lineare Interpolation zu ermitteln

Druckwinkel		Einzellager	gepaart DB oder DF
15°	$F_a/F_r \le 0.55$	P = F _r	P = F _r + 1,25 F _a
	$F_a/F_r > 0.55$	P = 0,45 F _r + F _a	P = 0,72 F _r + 1,63 F _a
25°	$F_a/F_r \le 0.68$	P = F _r	P = F _r + 0,92 F _a
	$F_a/F_r > 0.68$	P = 0,41 F _r + 0,87 F _a	P = 0,66 F _r + 1,41 F _a
30°	$F_{a}/F_{r} \le 0.80$	P = F _r	P = F _r + 0,78 F _a
	$F_{a}/F_{r} > 0.80$	P = 0,39 F _r + 0,76 F _a	P = 0,63 F _r + 1,24 F _a
40°	$F_{a}/F_{r} \le 1.14$	P = F _r	P = F _r + 0,55 F _a
	$F_{a}/F_{r} > 1.14$	P = 0,35 F _r + 0,57 F _a	P = 0,56 F _r + 1,93 F _a
45°	$F_{a}/F_{r} \le 1,35$	P = F _r	P = F _r + 0,46 F _a
	$F_{a}/F_{r} > 1,35$	P = 0,33 F _r + 0,5 F _a	P = 0,53 F _r + 0,81 F _a

Tabelle 32: Ermittlung der dynamischen äquivalenten Belastung für Radialschrägkugellager


Netztafel

Die graphische Auswertung des Lebensdauergesetzes ermöglicht die Berechnung der Tragfähigkeit und Lebensdauer von Lagern in einfacher Weise nach der folgenden Netztafel.

Dabei bedeuten:

 $L_{\rm 10(h)}$ = Lebensdauer in Stunden die von 90% einer genügend großen Menge gleicher Lager erreicht oder überschritten wird.

- e dyn. äquivalente Lagerbelastung in Newton
- n = Betriebsdrehzahl in min-1

Berechnungsbeispiel Präzisions Miniatur-Kugellager 636:

Gegeben: C = 3 300 N

P = 550 N n = 2 000 min⁻¹

für C/P = 6 und $n = 2 000 \text{ min}^{-1}$ ist oben abzulesen: $L_{10(h)} = 1800 \text{ h}$

9. Reibung und Erwärmung

Die Reibungsleistung eines Kugellagers setzt sich aus mehreren Anteilen zusammen. Auf Grund der Vielzahl der Einflussgrößen können Reibungsmoment und Reibungsleistung nur annähernd und für einen konstanten Betriebszustand kalkuliert werden.

Einfluss der Schmierung und Abdichtung auf die Reibung

Die Leerlaufreibung hängt ab von:

- · der Fettmenge
- · der Drehzahl
- · der Betriebsviskosität des Schmierstoffs
- · den Dichtungen
- · dem Einlaufzustand des Lagers

Der günstigste Betriebszustand wird mit der Schmierstoffmenge erreicht die zur geringsten Temperaturerhöhung am Lager führt.

Wärmeabfuhr

Die Reibungsleistung wird in Wärme umgesetzt. Diese Wärme wird aus dem Lager abgeführt.

Wärmeabfuhr durch den Schmierstoff

- bei Ölschmierung wird ein Teil der Wärme durch das Öl abgeführt
- · Fett führt keine Wärme ab

Wärmeableitung über Welle und Gehäuse

Diese hängt ab von der Temperaturdifferenz zwischen Lager und Umgebung.

Näherungsweise Bestimmung der Reibungsgrößen

Für die meisten Betriebsbedingungen ist die näherungsweise Bestimmung der Reibungsleistung ausreichend. Voraussetzungen für die näherungsweise Bestimmung sind:

- · ein mittlerer Drehzahlbereich
- · die richtig dosierte Schmierstoffmenge

Frisch befettete Lager können höhere Reibungsmomente erzeugen. Bei guter Fettverteilung oder optimaler Ölschmierung werden die Angaben unterschritten.

Reibungsanteil	Einflussgröße
Rollreibung	Größe der Belastung
Gleitreibung der Wälz- körper Gleitreibung des Käfigs	Größe und Richtung der Belastung, Drehzahl und Schmierungszustand Ein- laufzustand
Flüssigkeitsreibung - Strömungswiderstände	Bauart und Drehzahl Art, Menge und Viskosität des Schmierstoffs
Dichtungsreibung	Bauart und Vorspannung der Dichtung

Tabelle 33: Einflussgröße und Reibungsanteil

Lagerbauart		Reibungszahl f
Rillenkugellager	einreihig zweireihig	0,0015 bis 0,0020 0,0020
Schrägkugellager	einreihig zweireihig	0,0020 bis 0,0035 0,0025 bis 0,0030
Axialkugellager	-	0,0013

Tabelle 34: Reibungszahl f

$$M_R = F * F * \frac{d_M}{2}$$
 $N_R = M_R * \frac{n}{9550}$

\mathbf{M}_{R}	Nmm Reibungsmoment des Lagers
f	- Reibungszahl (Tabelle 34)
F	N Radiallast bei Radiallagern,
	Axiallast bei Axiallagern
$\mathbf{d}_{_{\mathrm{M}}}$	mm mittlerer Lagerdurchmesser (d+D) / 2
$N_{_{\rm R}}$	W Reibungsleistung
n	min ⁻¹ Betriebsdrehzahl